OLSZTYŃSKIE PLANETARIUM I OBSERWATORIUM ASTRONOMICZNE POLSKIE TOWARZYSTWO METEORYTOWE II SEMINARIUM METEORYTOWE 24-26.04.2003 OLSZTYN

Marian SZURGOT¹, Krzysztof POLAŃSKI²

BADANIA MIKROSKOPOWE CHONDRYTÓW EL HAMMAMI I GOLD BASIN

Celem niniejszej pracy było przeprowadzenie badań mikroskopowych, analizy składu chemicznego i identyfikacji minerałów wybranych typów chondrytów. Badania prowadzono z użyciem mikroskopów optycznych, skaningowego mikroskopu elektronowego i mikroanalizotora rentgenowskiego.

Rys. 1. Widmo EDS chondrytu: Gold Basin (górne) i El Hammami (dolne).

¹ Instytut Fizyki Politechniki Łódzkiej, Wólczańska 219, 93 005 Łódź e-mail: mszurgot@lodd.p.lodz.pl ² Katadra Einyki Cick, St. L. St. L.

 ² Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego, Pomorska 149/153,
 90 236 Łódź, e-mail: kpolanski@mvii.uni.lodz..pl

			Meteoryty
	Gold Basin	El Hammami	kamienne
			(Krinov 1960)
Pierwiastek	Zawartość	Zawartość	Zawartość
	% wagowe	% wagowe	% wagowe
0	41.84	38.91	41.0
Si	19.56	18.49	21.0
Mg	14.47	13.66	14.3
Fe	16.60 (1-10)	20.99 (16-21)	15.5
	(Mason 1962)	(Mason 1962)	
S	1.77	1.44	1.82
Al	1.65	1.79	1.56
Ca	1.19	1.69	1.80
Ni	1.03	1.08	1.10
Na	0.73	1.22	0.80
Cr	0.52	0.34	0.40
Mn	0.43		0.16
Р	0.20	0.39	0.10
С	śladowa	śladowa	0.16
K	śladowa	śladowa	0.07
Ti			0.12
Со			0.08
Suma	100.00	100.00	100.00

Tabela 1. Średnia zawartość pierwiastków w meteorytach El Hammami i Gold Basin.

Rys. 2. Obrazy powierzchni meteorytów El Hammami i Gold Basin pod skaningowym mikroskopem elektronowym. Obrazy BSE. Widać chondry, otoczki chondr i ciasto skalne. Pokazane obszary meteorytów wykorzystano do określenia średniej zawartości pierwiastków (Tabela 1). Powiększenie 40x.

Rys. 3. Chondry i ciasto skalne w meteorytach: (a) Gold Basin, (b) i (c) El Hammami.
Skaningowy mikroskop elektronowy. Obrazy wstecznie rozproszonych elektronów.
(a) Chondra oliwinowa (duża) i troilitowa (mała z prawej strony) w Gold Basin.
(b) Chondra skaleniowa z otoczką magnetytowo-kamacytową w El Hammami. Skaleń - ciemny owal, magnetyt- jasny obszar przylegąjący do chondry, szary obszar to kamacyt.

(c) chondra krzemionkowa w El Hammami.

Rys. 4. Histogramy rozkładu wielkości chondr w meteorycie: Gold Basin (górny rys.) i El Hammami (dolny rys.).

Rys. 5. Chondry oliwinowe i skała macierzysta w płytkach cienkich z meteorytów kamiennych(a) El Hammami – przykład chondry pasiastej, (b) Gold Basin – przykład chondry pasiastej złożonej. Mikroskop polaryzacyjny, światło przechodzące, polaroidy skrzyżowane. Pole obserwacji 1x0.7mm.

Rys. 6. (a). Ekscentryczno – promienista chondra piroksenowa w chondrycie Gold Basin. (b). Chondra oliwinowa i ciasto skalne w chondrycie Gold Basin. Obrazy w płytce cienkiej przy skrzyżowanych polaroidach. Pole obserwacji 1x0.7mm.

W chondrycie oliwinowym El Hammani (chondryt oliwinowo-bronzytowy typu H5) (Grossman 1998, Grady 2000) i chondrycie zwyczajnym Gold Basin (chondryt oliwinowo-hiperstenowy typu L4) (Grossman 1998, Grady 2000) określono średni i lokalny skład chemiczny, ujawniono i zidentyfikowano różne fazy mineralne.

Stwierdzono, że głównymi pierwiastkami tworzącymi materię badanych meteorytów są obejmujące około 92 % całego składu mineralnego: Si, O, Fe i Mg (Tabela 1, Rys. 1 i 2). Istotnymi składnikami meteorytów o wkładzie łącznym około 8 % okazały się: Ca, Al., S, Ni, Na, Cr, P, Mn, Cl, C (Tabela 2, Rys. 1 i 2).

Określono gęstość badanych meteorytów: 3.51 g/cm^3 dla El Hammami i 3.45 g/cm^3 dla Gold Basin. Wartości te są bliskie średniej gęstości chondrytów - 3.54 g/cm^3 wg Krinova (1960).

Ujawniono i zanalizowano typowe dla tej klasy meteorytów struktury - chondry (Rys. 2, 3, 5, 6, 10). Stwierdzono, że rozmiary chondr, wyrażone ich średnicą wynoszą od 0.1 do 3 mm (Rys. 4). Wyróżniono różne populacje chondr: małe, średnie i duże, z których najczęściej spotykanymi są chondry średnie 0.3-1.2 mm (Rys. 4).

Rys. 7. Porfirowa struktura ciasta skalnego z automorficznymi kryształami oliwinów w chondrycie Gold Basin. Obrazy w płytce cienkiej przy skrzyżowanych polaroidach. Pole obserwacji 1x0.7mm.

Rys. 8. Wydzielenia kamacytu w cieście skalnym El Ha- Rys. 9. Żyłki troilitowe w mmami. Obszary jasne – kamacyt, ciemne wskazują dużą cieście skalnym meteorytu El zawartość Mg (w połączeniu z Si, O i Fe - oliwin), szare Hammami. wykazują dużą zawartość S (troilit). Skaningowy mikroskop elektronowy. Obrazy BSE.

Rys. 10. Chondry ziarniste oliwinowe w meteorycie Gold Basin. Obrazy w mikroskopie optycznym w świetle odbitym. Niepełny kontrast fazowy. Pole widzenia 3x2mm.

Badania płytek cienkich ujawniły w świetle spolaryzowanym różne typy teksturalne chondr, m. in. chondry pasiaste - złożone z warstwowo ułożonych kryształów oliwinów, rozdzielonych między sobą warstewkami szkliwa (Rys. 5). Oprócz najbardziej popularnych chondr oliwinowych, zaobserwowano także chondry piroksenowe (Rys. 6a), skaleniowe (Rys. 3b) i krzemionkowe (Rys. 3c). Charakterystyczną cechą w obrazie mikroskopowym było również występowanie żyłek troilitowych (Rys. 3b, 9).

Oprócz oliwinów ((Mg,Fe)₂SiO₄) i piroksenów ((Mg,Fe)SiO₃), stanowiących główny składnik chondr i ciasta skalnego (Rys. 2, 3, 5, 7), wykryto także inne minerały m. in.: kamacyt (Rys. 8), taenit, troilit (FeS) (Rys. 8, 9), chromit (FeCr₂O₄) (Rys. 8a), schreibersyt ((Fe,Ni)₃P), glinokrzemiany reprezentowane przez skalenie (Rys. 3b), magnetyt (Fe₃O₄) (Rys. 3b), krzemionkę (SiO₂), i inne.

Interesujące obrazy chondr i ciasta skalnego uzyskano dzięki zastosowaniu kontrastu fazowego w mikroskopie optycznym nowej generacji typu Axiotech firmy Carl Zeiss. Wypolerowane płytki obu chondrytów ujawniły w świetle odbitym, przy niepełnym kontraście fazowym niezwykłe bogactwo kolorów, umożliwiające bardziej precyzyjne rozróżnianie różnych faz mineralnych i ich analizowanie (Rys.10).

Przeprowadzone badania mikroskopowe tych niedawno znalezionych i sklasyfikowanych, a przez to mniej znanych meteorytów, są pierwszym krokiem w ich dokładniejszym poznaniu oraz analizie genezy, warunków powstawania i przeobrażeń wywołanych także czynnikami ziemskimi. Analiza typów petrograficznych i mineralogicznych oraz histogramów rozkładu wielkości chondr w obu tych meteorytach ujawnia fakt, że są one typowe i podobne do innych, wcześniej zbadanych chondrytów (Manecki 1975, Hurnik i in. 1992, Mason 1962, Wood 1983, Krinov 1960, Norton 2002, McSween 1999, Manecki 2001, Siemiątkowski 2001), podobny jest też skład chemiczny, reprezentowany zarówno przez obecność jak i zawartość pierwiastków, a także przez utworzone z nich minerały. Zawartość żelaza w chondrycie Gold Basin (L4), jak podaje Tabela 1, wydaje się być nieco zawyżona, natomiast w chondrycie El Hammami (H5), jest ona wyższa i zgodna z oczekiwaną wartością dla chondrytów typu H. Te podobieństwa i różnice są niewątpliwie nieprzypadkowe, a ich wyjaśnienie może przybliżyć nas do pełniejszego zrozumienia procesów tworzenia materii pozaziemskiej i jej ewolucji. Metody mikroskopii optycznej i elektronowej, w świetle prezentowanych wyników, są nadal cennym narzędziem badań materii meteorytowej, odkrywania jej tajemnic i ujawniania niezwykłego piękna.

Serdecznie dziękujemy Panu Andrzejowi Pilskiemu za udostępnienie płytek cienkich meteorytów do badań. Profesorowi Andrzejowi Maneckiemu i Profesorowi Łukaszowi Karwowskiemu wyrażamy wdzięczność za wnikliwą i stymulującą dyskusję wyników oraz życzliwą atmosferę podczas seminarium meteorytowego.

LITERATURA

MANECKI A., 1975: Meteoryty, pyły kosmiczne i skały księżycowe, Warszawa.

HURNIK B., HURNIK H., 1992: Meteoroidy, meteory, meteoryty, Poznań.

MASON B., 1962: Meteorites, New York.

WOOD J. A., 1983: Układ Słoneczny, Warszawa.

KRINOV E. L., 1960: Principles of Meteoritics, New York.

NORTON O. R., 2002: The Cambridge Encyclopedia of Meteorites, Cambridge.

Mc SWEEN H. Y., 1999: Meteorites and Their Parent Planets, New York.

GROSSMAN J. N., 1998: El Hammami, Met. Bull. No 82; MAPS 33, A222.

GROSSMAN J. N., 1998: Gold Basin, Met. Bull. No 82; MAPS 33, A223.

GRADY M. M., 2000: Catalogue of Meteorites, Cambridge.

MANECKI A., 2001: Polish scientists in studies of extraterrestrial matter; past, present, reminiscences, Geol. Quart. 45(3), 211-217.

SIEMIĄTKOWSKI J., 2001: Petrography of the Baszkówka chondrite, Geol. Quart. 45(3), 263-280.